Dosimetric validation of Monaco treatment planning system on an Elekta VersaHD linear accelerator
نویسندگان
چکیده
The purpose of this study is to perform dosimetric validation of Monaco treatment planning system version 5.1. The Elekta VersaHD linear accelerator with high dose rate flattening filter-free photon modes and electron energies was used in this study. The dosimetric output of the new Agility head combined with the FFF photon modes warranted this investigation into the dosimetric accuracy prior to clinical usage. A model of the VersaHD linac was created in Monaco TPS by Elekta using commissioned beam data including percent depth dose curves, beam profiles, and output factors. A variety of 3D conformal fields were created in Monaco TPS on a combined Plastic water/Styrofoam phantom and validated against measurements with a calibrated ion chamber. Some of the parameters varied including source to surface distance, field size, wedges, gantry angle, and depth for all photon and electron energies. In addition, a series of step and shoot IMRT, VMAT test plans, and patient plans on various anatomical sites were verified against measurements on a Delta4 diode array. The agreement in point dose measurements was within 2% for all photon and electron energies in the homogeneous phantom and within 3% for photon energies in the heterogeneous phantom. The mean ± SD gamma passing rates of IMRT test fields yielded 93.8 ± 4.7% based on 2% dose difference and 2 mm distance-to-agreement criteria. Eight previously treated IMRT patient plans were replanned in Monaco TPS and five measurements on each yielded an average gamma passing rate of 95% with 6.7% confidence limit based on 3%, 3 mm gamma criteria. This investigation on dosimetric validation ensures accuracy of modeling VersaHD linac in Monaco TPS thereby improving patient safety.
منابع مشابه
Validation of treatment planning system using simulation PRIMO code.
Introduction: In radiation therapy, in order to double-check the dosimetric results of the main treatment planning system (TPS), a distinct TPS, with few capacitances in terms of contouring and a variety of dose calculation algorithms is used. This system has the capability to double check the planification and the accurate prediction of dose distribution in order to be ensured...
متن کاملAccuracy Evaluation of Isogray TPS Dose Calculations in Symmetric and Asymmetric Fields of the Elekta Compact Linear Accelerator
Introduction: Radiation therapy is one of the most important methods of cancer treatment. Radiation therapy uses symmetric and asymmetric fields in which the radiation dose distribution is different. To calculate the dose distribution, computer treatment planning systems are used which must have acceptable calculations accuracy. The aim of this study was to investigate the accuracy of the dose ...
متن کاملA study on needed or unneeded ReDosimetry and Recomissioning of a linac with Add on MLC by Comparing Dosimetric Data
Introduction: Today different uses of multileaf collimators(MLC) in different techniques of radiotherapy are common. Due to the use of this facility it is possible to have maximum radiation dose to target volumes and minimum radiation dose to critical tissues surronding treatment volumes. But there are numerouse Linear accelerators in IRAN without MLC. Because of high price of...
متن کاملTreatment planning validation for symmetric and asymmetric motorized wedged fields
Purpose: Wedged beam are often used in clinical radiotherapy to compensate missing tissues and dose gradients. The Elekta Precise linear accelerator supports an internal motorized wedge, which is a single large, physical wedge on a motorized carriage. In this study, the dosimetric performance of Elekta precise three dimensional treatment planning system (3DTPS) is evaluated by comparing the cal...
متن کاملHippocampal‐sparing whole‐brain radiotherapy using the Elekta equipment
The purpose of this study was to evaluate the feasibility of hippocampal-sparing whole-brain radiotherapy (HS WBRT) using the Elekta Infinity linear accelerator and Monaco treatment planning system (TPS). Ten treatment plans were created for HS-WBRT to a dose of 30 Gy (10 fractions). RTOG 0933 recommendations were applied for treatment planning. Intensity-modulated radiotherapy (IMRT) plans for...
متن کامل